Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Benzyl-2-(4-chlorophenyl)-4,5-diphenyl-1H-imidazole

Mahmood Ghoranneviss,^a Ghodsi Mohammadi Ziarani,^b Alireza Abbasi,^c* Mohammad Reza Hantehzadeh^a and Zahra Farahani^b

^aPlasma Physics Research Center, Science & Reseach Campus, Islamic Azad University, Tehran, Iran, ^bDepartment of Chemistry, University of Alzahra, Tehran, Iran, and ^cSchool of Chemistry, University College of Science, University of Tehran, Tehran, Iran

Correspondence e-mail: aabbasi@khayam.ut.ac.ir

Received 20 May 2008; accepted 2 June 2008

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.091; data-to-parameter ratio = 14.7.

The molecular conformation of the title compound, $C_{28}H_{21}ClN_2$, is stabilized by an intramolecular $C-H \cdots N$ hydrogen bond. It has many pharmacological properties, such as being an inhibitor of P38 MAP Kinase, and can play an important role in biochemical processes.

Related literature

For related structures and properties, see: Balalaie et al. (2003); Nagarapu et al. (2007); Kidwai et al. (2007).

Experimental

Crystal data

$\begin{array}{l} C_{28}H_{21}{\rm ClN}_2 \\ M_r = 420.92 \\ {\rm Triclinic,} \ P\overline{1} \\ a = 7.4880 \ (11) \ \mathring{\rm A} \\ b = 9.2711 \ (16) \ \mathring{\rm A} \\ c = 16.049 \ (3) \ \mathring{\rm A} \\ \alpha = 87.169 \ (13)^\circ \\ \beta = 76.704 \ (12)^\circ \end{array}$	$\gamma = 87.842 (13)^{\circ}$ $V = 1082.6 (3) \text{ Å}^3$ Z = 2 Mo K\alpha radiation $\mu = 0.19 \text{ mm}^{-1}$ T = 290 (2) K $0.3 \times 0.2 \times 0.2 \text{ mm}$
Data collection	
STOE IPDS-II diffractometer Absorption correction: none 8769 measured reflections	4246 independent reflections 2814 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture

$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of
$wR(F^2) = 0.090$	independent and constrained
S = 0.94	refinement
4246 reflections	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
288 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1 H

yd	lroge	en-bon	d geo	me	try	(A,	°).		
				-					

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C3−H3···N1	0.93	2.56	2.874 (2)	100

Data collection: X-AREA (Stoe & Cie, 1997); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

This work was supported by a grant from the University of Tehran and the University of Alzahra.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2715).

References

Balalaie, S., Hashemi, M. M. & Akhbari, M. (2003). Tetrahedron Lett. 44, 1709-1711

Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Kidwai, M., Mothsra, P., Bansal, V., Somvanshi, R. K., Ethayathulla, A. S., Dey,

- S. & Singh, T. P. (2007). J. Mol. Catal. A Chem. 265, 177-182. Nagarapu, L., Apuri, S. & Kantevari, S. (2007). J. Mol. Catal. A Chem. 266, 104–108.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (1997). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.

Acta Cryst. (2008). E64, o1233 [doi:10.1107/S1600536808016802]

1-Benzyl-2-(4-chlorophenyl)-4,5-diphenyl-1*H*-imidazole

M. Ghoranneviss, G. Mohammadi Ziarani, A. Abbasi, M. R. Hantehzadeh and Z. Farahani

Comment

The synthesis, reactions and biological properties of substituted imidazole constitutes a significant part of modern heterocyclic chemistry. Compounds containing an imidazole ring system have many pharmacological properties and play important roles in biochemical processes. Many of substituted diaryl imidazoles are known as inhibitors of P38 MAP Kinase (Balalaie, *et al.*, 2003; Nagarapu, *et al.*, 2007; Kidwai, *et al.*, 2007).

The molecular structure of the title compound and the atom-numbering scheme are shown in Fig. 1. The phenyl rings attached at C2, N2, C9 and C8 enclose dihedral angles of $40.74 (8)^\circ$, $85.60 (7)^\circ$, $77.10 (6)^\circ$, $16.55 (11)^\circ$, respectively, with the imidazole ring. An intramolecular hydrogen bond stabilises the molecular conformation. Dipole-dipole and van der Waals interactions are effective in the molecular packing.

Experimental

A mixture of benzil (2.5 mmol), 4-chlorobenzaldehyde (2.5 mmol), benzylamine (2.5 mmol), ammonium acetate (5 mmol) and activated SBA-sulfonic acid (0.02 g) was heated at 140°C for 6 minutes. The progress of reaction was monitored by TLC. After cooling to room temperature, the mixture was dissolved in hot ethylacetate and the catalyst was removed by filtration. The filtrate was left for crystallization.

Refinement

Aromatic H atoms were placed in calculated positions (C—H = 0.93 Å) and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2Ueq(C)$. Methylene H atoms were located in difference density maps and their coordinates and isotropic displacement parameters were refined freely.

Figures

Fig. 1. Molecular structure of (I), with 50% probability displacement ellipsoids. H atoms are shown as circles of arbitrary radii.

(I)

Crystal data	
C ₂₈ H ₂₁ ClN ₂	Z = 2
$M_r = 420.92$	$F_{000} = 440$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.291 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.4880 (11) Å	Cell parameters from 6987 reflections
b = 9.2711 (16) Å	$\theta = 1.2 - 29.8^{\circ}$
c = 16.049 (3) Å	$\mu = 0.19 \text{ mm}^{-1}$
$\alpha = 87.169 (13)^{\circ}$	T = 290 (2) K
$\beta = 76.704 \ (12)^{\circ}$	Block, colorless
$\gamma = 87.842 \ (13)^{\circ}$	$0.3 \times 0.2 \times 0.2$ mm
$V = 1082.6 (3) \text{ Å}^3$	

Data collection

STOE IPDS-II diffractometer	2814 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.034$
Monochromator: graphite	$\theta_{\text{max}} = 26.0^{\circ}$
T = 290(2) K	$\theta_{\min} = 2.2^{\circ}$
Area detector - phi oscillation scans	$h = -9 \rightarrow 9$
Absorption correction: none	$k = -11 \rightarrow 10$
8769 measured reflections	$l = -19 \rightarrow 19$
4246 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.090$	$w = 1/[\sigma^2(F_0^2) + (0.0457P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 0.94	$(\Delta/\sigma)_{max} < 0.001$
4246 reflections	$\Delta \rho_{max} = 0.13 \text{ e} \text{ Å}^{-3}$
288 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y Cl1 0.0741(2)0.17061 (7) 0.52946(7) 0.32233(4)N1 0.60096 (17) 0.82368 (15) 0.59681 (9) 0.0412 (3) N2 0.36337 (17) 0.74456 (15) 0.69583 (8) 0.0403 (3) C1 0.2919(2)0.56492 (19) 0.54889 (12) 0.0456(4)H10.055* 0.2804 0.5096 0.5997 C2 0.4446(2)0.75675 (17) 0.61039 (10) 0.0393(4)C3 0.9378 (2) 0.61528 (12) 0.0476 (4) 0.9430(2)H3 0.9370 0.8959 0.057* 0.5656 C4 0.7878(2)0.93196 (18) 0.68467 (11) 0.0413(4)C5 0.4409(2)0.80553 (19) 0.83352(11) 0.0419 (4) C6 0.5939(2) 0.2487 (2) 0.40748 (12) 0.0492 (5) C7 0.2308(2)0.5117(2)0.48201 (12) 0.0491 (4) H70.1784 0.4213 0.4874 0.059* C8 0.6244(2)0.85566 (17) 0.67670 (10) 0.0391 (4) C9 0.4790(2) 0.80756 (18) 0.73880(11) 0.0398 (4) C10 0.1795 (2) 0.55784 (19) 0.79077 (11) 0.0435 (4) C11 0.3703 (2) 0.69955 (18) 0.54181 (11) 0.0399 (4) C12 0.3880(2)0.77975 (19) 0.46497 (11) 0.0475 (4) H12 0.4418 0.8696 0.4587 0.057* C13 0.7078 (2) 0.5348 (3) 0.87682 (12) 0.0567 (5) H13 0.6178 0.6416 0.8463 0.068* C14 0.3263 (3) 0.7273 (2) 0.39788 (12) 0.0530(5)H14 0.3373 0.7817 0.3468 0.064* C15 1.0919 (3) 1.0925 (2) 0.69172 (14) 0.0607 (5) H15 1.1921 1.1472 0.6939 0.073* C16 0.1802 (2) 0.6943 (2) 0.0440 (4) 0.73629 (12) H16A 0.114(2)0.6806 (18) 0.6900(11) 0.046 (5)* H16B 0.114(2) 0.7692 (19) 0.7710(11) 0.046 (5)* C17 0.0550 (5) 1.0877 (2) 1.0226 (2) 0.61875 (13) H17 1.1863 1.0290 0.5715 0.066* C18 0.0320 (3) 0.5323 (2) 0.85851 (13) 0.0625 (5) H18 -0.06390.6003 0.8704 0.075* C19 0.1645 (4) 0.3071 (3) 0.89254 (17) 0.0854 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

0.1596	0.2226	0.9267	0.102*
0.7963 (2)	1.0024 (2)	0.75824 (12)	0.0505 (4)
0.6988	0.9963	0.8060	0.061*
0.3165 (3)	0.9005 (2)	0.88092 (12)	0.0577 (5)
0.2503	0.9662	0.8533	0.069*
0.2891 (3)	0.8988 (3)	0.96904 (13)	0.0699 (6)
0.2046	0.9633	1.0003	0.084*
0.9463 (3)	1.0807 (2)	0.76139 (13)	0.0604 (5)
0.9495	1.1263	0.8113	0.072*
0.3199 (3)	0.4554 (2)	0.77506 (13)	0.0557 (5)
0.4208	0.4706	0.7298	0.067*
0.3117 (4)	0.3305 (3)	0.82608 (17)	0.0747 (6)
0.4072	0.2621	0.8150	0.090*
0.3851 (3)	0.8033 (3)	1.01068 (13)	0.0680 (6)
0.3676	0.8037	1.0699	0.082*
0.5065 (3)	0.7074 (3)	0.96484 (14)	0.0688 (6)
0.5708	0.6412	0.9931	0.083*
0.0251 (4)	0.4068 (3)	0.90890 (15)	0.0820 (7)
-0.0755	0.3905	0.9542	0.098*
	0.1596 0.7963 (2) 0.6988 0.3165 (3) 0.2503 0.2891 (3) 0.2046 0.9463 (3) 0.9495 0.3199 (3) 0.4208 0.3117 (4) 0.4072 0.3851 (3) 0.3676 0.5065 (3) 0.5708 0.0251 (4) -0.0755	0.1596 0.2226 0.7963 (2) 1.0024 (2) 0.6988 0.9963 0.3165 (3) 0.9005 (2) 0.2503 0.9662 0.2891 (3) 0.8988 (3) 0.2046 0.9633 0.9463 (3) 1.0807 (2) 0.9495 1.1263 0.3199 (3) 0.4554 (2) 0.4208 0.4706 0.3117 (4) 0.3305 (3) 0.3676 0.8037 0.5065 (3) 0.7074 (3) 0.5708 0.6412 0.0251 (4) 0.4068 (3) -0.0755 0.3905	0.1596 0.2226 0.9267 0.7963 (2) 1.0024 (2) 0.75824 (12) 0.6988 0.9963 0.8060 0.3165 (3) 0.9005 (2) 0.88092 (12) 0.2503 0.9662 0.8533 0.2891 (3) 0.8988 (3) 0.96904 (13) 0.2046 0.9633 1.0003 0.9463 (3) 1.0807 (2) 0.76139 (13) 0.9495 1.1263 0.8113 0.3199 (3) 0.4554 (2) 0.77506 (13) 0.4208 0.4706 0.7298 0.3117 (4) 0.3305 (3) 0.82608 (17) 0.4072 0.2621 0.8150 0.3851 (3) 0.7074 (3) 0.96484 (14) 0.5708 0.6412 0.9931 0.0251 (4) 0.4068 (3) 0.90890 (15) -0.0755 0.3905 0.9542

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0667 (3)	0.1008 (5)	0.0631 (3)	-0.0114 (3)	-0.0247 (3)	-0.0313 (3)
N1	0.0440 (7)	0.0441 (8)	0.0370 (8)	-0.0063 (6)	-0.0110 (6)	-0.0032 (6)
N2	0.0392 (7)	0.0453 (8)	0.0374 (8)	-0.0061 (6)	-0.0101 (6)	-0.0014 (6)
C1	0.0421 (9)	0.0474 (11)	0.0493 (10)	-0.0038 (8)	-0.0142 (8)	-0.0024 (8)
C2	0.0399 (8)	0.0402 (10)	0.0396 (9)	-0.0009(7)	-0.0126 (7)	-0.0028 (7)
C3	0.0473 (9)	0.0531 (11)	0.0429 (10)	-0.0051 (8)	-0.0102 (8)	-0.0057 (8)
C4	0.0445 (9)	0.0407 (10)	0.0407 (9)	-0.0038 (7)	-0.0136 (7)	-0.0021 (7)
C5	0.0408 (8)	0.0473 (10)	0.0383 (9)	-0.0095 (7)	-0.0096 (7)	0.0000 (8)
C6	0.0400 (9)	0.0621 (13)	0.0497 (11)	0.0020 (8)	-0.0156 (8)	-0.0205 (9)
C7	0.0400 (9)	0.0491 (11)	0.0598 (12)	-0.0063 (8)	-0.0124 (8)	-0.0105 (9)
C8	0.0427 (8)	0.0372 (9)	0.0384 (9)	-0.0002 (7)	-0.0109 (7)	-0.0040 (7)
C9	0.0401 (8)	0.0419 (9)	0.0394 (9)	-0.0012 (7)	-0.0128 (7)	-0.0033 (7)
C10	0.0417 (9)	0.0516 (11)	0.0402 (10)	-0.0117 (8)	-0.0136 (8)	-0.0035 (8)
C11	0.0366 (8)	0.0437 (10)	0.0404 (9)	0.0010 (7)	-0.0100 (7)	-0.0064 (8)
C12	0.0558 (10)	0.0434 (11)	0.0443 (10)	-0.0058 (8)	-0.0122 (8)	-0.0055 (8)
C13	0.0580 (11)	0.0655 (13)	0.0497 (12)	0.0048 (9)	-0.0196 (9)	-0.0046 (10)
C14	0.0636 (11)	0.0563 (12)	0.0419 (10)	0.0011 (9)	-0.0174 (9)	-0.0059 (9)
C15	0.0520 (10)	0.0654 (13)	0.0692 (14)	-0.0171 (9)	-0.0200 (10)	-0.0062 (11)
C16	0.0337 (8)	0.0529 (11)	0.0454 (10)	-0.0023 (8)	-0.0083 (8)	-0.0041 (9)
C17	0.0450 (10)	0.0636 (13)	0.0551 (12)	-0.0105 (9)	-0.0080 (9)	-0.0002 (10)
C18	0.0561 (11)	0.0763 (15)	0.0532 (12)	-0.0186 (10)	-0.0061 (9)	-0.0019 (11)
C19	0.140 (2)	0.0633 (16)	0.0644 (16)	-0.0376 (17)	-0.0452 (17)	0.0139 (13)
C20	0.0515 (10)	0.0560 (12)	0.0443 (10)	-0.0104 (8)	-0.0088 (8)	-0.0082 (9)
C21	0.0628 (11)	0.0599 (13)	0.0483 (11)	0.0059 (10)	-0.0092 (9)	-0.0034 (9)
C22	0.0746 (14)	0.0808 (16)	0.0480 (13)	0.0019 (12)	0.0005 (11)	-0.0138 (11)

C23	0.0634 (12)	0.0680 (13)	0.0554 (12)	-0.0141 (10)	-0.0206 (10)	-0.0166 (10)
C24	0.0565 (11)	0.0577 (13)	0.0543 (12)	-0.0039 (9)	-0.0161 (9)	0.0028 (10)
C25	0.0997 (17)	0.0578 (14)	0.0771 (16)	-0.0012 (12)	-0.0425 (14)	0.0001 (12)
C26	0.0800 (14)	0.0880 (17)	0.0359 (11)	-0.0195 (12)	-0.0106 (10)	0.0004 (11)
C27	0.0821 (14)	0.0792 (16)	0.0513 (13)	-0.0035 (12)	-0.0298 (11)	0.0076 (11)
C28	0.0988 (18)	0.092 (2)	0.0522 (14)	-0.0498 (16)	-0.0062 (12)	0.0070 (13)
Geometric para	meters (Å, °)					
Cl1—C6		1.7436 (17)	C13–	C27	1.37	9 (3)
N1—C2		1.314 (2)	C13–	-H13	0.93	00
N1—C8		1.381 (2)	C14–	-H14	0.93	00
N2—C2		1.367 (2)	C15–	C17	1.37	3 (3)
N2—C9		1.385 (2)	C15–	C23	1.37	4 (3)
N2—C16		1.459 (2)	C15–	-H15	0.93	00
C1—C7		1.378 (2)	C16–	-H16A	1.00	0 (18)
C1—C11		1.388 (2)	C16–	-H16B	0.96	0 (17)
C1—H1		0.9300	C17–	-H17	0.93	00
C2—C11		1.471 (2)	C18–	C28	1.37	9 (3)
C3—C17		1.380 (2)	C18–	-H18	0.93	00
C3—C4		1.391 (2)	C19–	C28	1.35	6 (4)
С3—Н3		0.9300	C19–	C25	1.36	2 (4)
C4—C20		1.392 (2)	C19–	-H19	0.93	00
C4—C8		1.470 (2)	C20–	-C23	1.37	2 (3)
C5—C21		1.378 (2)	C20–	-H20	0.93	00
C5—C13		1.383 (3)	C21–	C22	1.38	1 (3)
С5—С9		1.480 (2)	C21–	-H21	0.93	00
C6—C7		1.369 (3)	C22–	-C26	1.36	4 (3)
C6—C14		1.373 (3)	C22–	-H22	0.93	00
С7—Н7		0.9300	C23–	-H23	0.93	00
C8—C9		1.368 (2)	C24–	-C25	1.38	0 (3)
C10—C24		1.377 (2)	C24–	-H24	0.93	00
C10—C18		1.378 (3)	C25–	-H25	0.93	00
C10—C16		1.501 (3)	C26–	-C27	1.36	2 (3)
C11—C12		1.390 (2)	C26–	-H26	0.93	00
C12—C14		1.381 (2)	C27–	-H27	0.93	00
C12—H12		0.9300	C28–	-H28	0.93	00
C2—N1—C8		105.97 (13)	C17–	-C15-C23	119.	26 (17)
C2—N2—C9		106.82 (13)	C17–	-C15-H15	120.	4
C2—N2—C16		128.26 (14)	C23–	-C15-H15	120.	4
C9—N2—C16		124.44 (14)	N2—	C16—C10	114.	03 (14)
C7—C1—C11		121.22 (18)	N2—	C16—H16A	107.	8 (10)
C7—C1—H1		119.4	C10–	-C16-H16A	110.	3 (10)
C11—C1—H1		119.4	N2—	C16—H16B	108.	6 (10)
N1—C2—N2		111.47 (14)	C10–	-C16-H16B	109.	0 (10)
N1—C2—C11		123.73 (15)	H16A	—С16—Н16В	106.	7 (13)
N2-C2-C11		124.79 (14)	C15–	C17C3	120.	22 (17)
C17—C3—C4		121.31 (16)	C15–	C17H17	119.	9
С17—С3—Н3		119.3	С3—	С17—Н17	119.	9

С4—С3—Н3	119.3	C10-C18-C28	120.7 (2)
C3—C4—C20	117.33 (16)	C10-C18-H18	119.7
C3—C4—C8	119.95 (15)	C28—C18—H18	119.7
C20—C4—C8	122.61 (15)	C28—C19—C25	120.0 (2)
C21—C5—C13	118.12 (17)	С28—С19—Н19	120.0
C21—C5—C9	122.19 (16)	С25—С19—Н19	120.0
C13—C5—C9	119.68 (15)	C23—C20—C4	121.03 (17)
C7—C6—C14	121.57 (17)	С23—С20—Н20	119.5
C7—C6—Cl1	119.75 (15)	C4—C20—H20	119.5
C14—C6—Cl1	118.69 (16)	C5—C21—C22	120.6 (2)
C6—C7—C1	118.92 (17)	C5-C21-H21	119.7
С6—С7—Н7	120.5	C22—C21—H21	119.7
C1—C7—H7	120.5	C26—C22—C21	120.6 (2)
C9—C8—N1	109.98 (14)	C26—C22—H22	119.7
C9—C8—C4	129.88 (15)	C21—C22—H22	119.7
N1—C8—C4	120.14 (14)	C20—C23—C15	120.83 (18)
C8—C9—N2	105.76 (14)	С20—С23—Н23	119.6
C8—C9—C5	132.19 (15)	С15—С23—Н23	119.6
N2—C9—C5	121.91 (14)	C10—C24—C25	120.4 (2)
C24—C10—C18	118.34 (19)	C10—C24—H24	119.8
C24—C10—C16	122.53 (16)	C25—C24—H24	119.8
C18—C10—C16	119.12 (17)	C19—C25—C24	120.3 (2)
C1—C11—C12	118.42 (16)	С19—С25—Н25	119.8
C1—C11—C2	122.62 (16)	С24—С25—Н25	119.8
C12—C11—C2	118.87 (15)	C27—C26—C22	119.51 (19)
C14—C12—C11	120.65 (17)	С27—С26—Н26	120.2
C14—C12—H12	119.7	С22—С26—Н26	120.2
C11—C12—H12	119.7	C26—C27—C13	120.5 (2)
C27—C13—C5	120.73 (19)	С26—С27—Н27	119.8
С27—С13—Н13	119.6	C13—C27—H27	119.8
C5—C13—H13	119.6	C19—C28—C18	120.2 (2)
C6—C14—C12	119.22 (18)	C19—C28—H28	119.9
C6—C14—H14	120.4	C18—C28—H28	119.9
C12—C14—H14	120.4		
C8—N1—C2—N2	0.58 (18)	N1—C2—C11—C12	-39.5 (2)
C8—N1—C2—C11	-178.04 (15)	N2—C2—C11—C12	142.03 (17)
C9—N2—C2—N1	-0.62 (19)	C1-C11-C12-C14	0.9 (2)
C16—N2—C2—N1	171.59 (15)	C2-C11-C12-C14	177.51 (15)
C9—N2—C2—C11	177.97 (15)	C21—C5—C13—C27	-1.1 (3)
C16—N2—C2—C11	-9.8 (3)	C9—C5—C13—C27	177.59 (18)
C17—C3—C4—C20	-1.0 (3)	C7—C6—C14—C12	0.0 (3)
C17—C3—C4—C8	175.34 (17)	Cl1—C6—C14—C12	179.73 (13)
C14—C6—C7—C1	0.3 (3)	C11-C12-C14-C6	-0.6 (3)
Cl1—C6—C7—C1	-179.45 (12)	C2-N2-C16-C10	115.85 (19)
C11—C1—C7—C6	0.1 (2)	C9—N2—C16—C10	-73.2 (2)
C2—N1—C8—C9	-0.31 (18)	C24—C10—C16—N2	-28.4 (2)
C2—N1—C8—C4	-179.85 (15)	C18—C10—C16—N2	152.54 (16)
C3—C4—C8—C9	165.88 (18)	C23—C15—C17—C3	0.8 (3)
C20—C4—C8—C9	-17.9 (3)	C4—C3—C17—C15	0.3 (3)

C3—C4—C8—N1	-14.7 (2)	C24—C10—C18—C28	-0.3 (3)
C20-C4-C8-N1	161.51 (16)	C16-C10-C18-C28	178.75 (18)
N1-C8-C9-N2	-0.06 (18)	C3—C4—C20—C23	0.7 (3)
C4—C8—C9—N2	179.42 (16)	C8—C4—C20—C23	-175.60 (17)
N1—C8—C9—C5	175.61 (17)	C13—C5—C21—C22	0.9 (3)
C4—C8—C9—C5	-4.9 (3)	C9—C5—C21—C22	-177.70 (18)
C2—N2—C9—C8	0.40 (18)	C5—C21—C22—C26	0.1 (3)
C16—N2—C9—C8	-172.20 (15)	C4—C20—C23—C15	0.4 (3)
C2—N2—C9—C5	-175.82 (15)	C17—C15—C23—C20	-1.2 (3)
C16—N2—C9—C5	11.6 (2)	C18—C10—C24—C25	0.1 (3)
C21—C5—C9—C8	105.1 (2)	C16-C10-C24-C25	-178.92 (18)
C13—C5—C9—C8	-73.6 (3)	C28—C19—C25—C24	-0.1 (3)
C21—C5—C9—N2	-79.8 (2)	C10-C24-C25-C19	0.1 (3)
C13—C5—C9—N2	101.5 (2)	C21—C22—C26—C27	-1.1 (3)
C7—C1—C11—C12	-0.7 (2)	C22—C26—C27—C13	0.9 (3)
C7—C1—C11—C2	-177.10 (14)	C5-C13-C27-C26	0.2 (3)
N1—C2—C11—C1	136.88 (17)	C25-C19-C28-C18	-0.1 (4)
N2-C2-C11-C1	-41.5 (2)	C10-C18-C28-C19	0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
C3—H3…N1	0.93	2.56	2.874 (2)	100

